CACTUS: Detecting and Resolving Conflicts in Objective Functions

Subhajit Das, Alex Endert

View presentation:2021-10-24T14:25:00ZGMT-0600Change your timezone on the schedule page
2021-10-24T14:25:00Z
Exemplar figure, but none was provided by the authors
Abstract

Machine learning (ML) models are constructed by expert ML practitioners using various coding languages, in which they tune and select model hyperparameters and learning algorithms for a given problem domain. In multi-objective optimization, conflicting objectives and constraints is a major area of concern. In such problems, several competing objectives are seen for which no single optimal solution is found that satisfies all desired objectives simultaneously. In the past, visual analytic (VA) systems have allowed users to interactively construct objective functions for a classifier. In this paper, we extend this line of work by prototyping a technique to visualize multi-objective objective functions either defined in a Jupyter notebook or defined using an interactive visual interface to help users to detect and resolve conflicting objectives. Visualization of the objective function enlightens potentially conflicting objectives that obstructs selecting correct solution(s) for the desired ML task or goal. We also present an enumeration of potential conflicts in objective specification in multi-objective objective functions for classifier selection. Furthermore, we demonstrate our approach in a VA system that helps users in specifying meaningful objective functions to a classifier by detecting and resolving conflicting objectives.